Determination of the actual ice mass on wind turbine blades
Measurements and methods for avoiding excessive icing loads and threads

Dr. Daniel Brenner
Head of Monitoring
Bosch Rexroth Monitoring Systems GmbH
Determination of the actual ice mass on wind turbine blades

Ice throw

-> heavy impact on drive train due to change of moment of inertia
Determination of the actual ice mass on wind turbine blades

Typical Ice Formation: On leading edge
Determination of the actual ice mass on wind turbine blades

Typical Ice Formation: On leading edge

Ice formation with high density

Ice throw critical at a thickness of about 2 cm
Measurement of blade vibration with accelerometers

- Precise detection of icing for automated turbine shutdown and restart

Installation on the turbine

HMU = Hub Measurement Unit
ECU = Evaluation & Communication Unit
Measurement of blade vibration with accelerometers

- Precise detection of icing for automated turbine shutdown and restart
- Early detection of rotor blade damages → repair possible at relatively low costs
- Automated turbine shutdown in case of detected severe structural damages

HMU = Hub Measurement Unit
ECU = Evaluation & Communication Unit
Determination of the actual ice mass on wind turbine blades

Natural vibration at blades shown after FFT

Blades 1st and 2nd natural frequency
Determination of the actual ice mass on wind turbine blades

Extreme icing event - spectrogram

- **Ice growth**
- **no ice**
- **massive ice**

<table>
<thead>
<tr>
<th>Time in days</th>
<th>Frequency in Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>2.6</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Extreme icing event - spectrogram

- All natural oscillations decrease due to ice
 - Blades natural frequencies as well as rotor natural frequencies

Icing event with over 250 kg ice per blade
Determining the actual ice mass on wind turbine blades

conversion: frequency deviation in Hz \leftrightarrow ice mass in kg

- M – blade mass
- m – mass of ice
- df – frequency deviation
- f – frequency without ice accretion
- k – conversion factor

\[
m = \frac{M}{k} \cdot \frac{df}{f}
\]

Note:
Frequency deviation df has to be compensated for influences of the current operation point of the turbine.
Determining the ice mass

conversion: frequency deviation in Hz ↔ ice mass in kg

- M – blade mass
- m – mass of ice
- df – frequency deviation
- f – frequency without ice accretion
- k – conversion factor

$$m = \frac{M}{k} \cdot \frac{df}{f}$$

But Ice mass no indicator for risk!

-> **Ice thickness more reasonable**
Determining the ice thickness

Conversion: ice mass in kg ↔ ice thickness in mm

- m – ice mass in kg
- l – length of the iced surface in m
- w – width of the iced surface in m
- ρ – density of ice in kg / m3
- th – ice thickness in m

$$th = \frac{m}{\rho \cdot l \cdot w}$$

Maximum ice thickness 1,5 – 2 cm until turbine shutdown necessary
Determination of the actual ice mass on wind turbine blades

Example for ice mass estimation

Most critical ice accretion **only** on **outer third** of the **leading edge**

- \(l = \frac{1}{3} \) blade length
- \(w = 0,1 \) m
- \(th = 0,02 \) m
- \(\rho = 900 \) kg / m\(^3\)

\[
th = \frac{m}{\rho \cdot l \cdot w}
\]

Example:

- **Blade length** = 45 m
- **Maximum ice mass** = 27 kg

-> **ice mass needed for overload estimation**
Conversion frequency deviation into ice mass?

- Relation between frequency deviation and ice mass depends on ice distribution across the blade
- Tests on a running turbine with extra masses of lead glued to the blade fullfilled
Conversion frequency deviation into ice mass?

- Relation between frequency deviation and ice mass depends on ice distribution across the blade.
- Tests on a running turbine with extra masses of lead glued to the blade fullfilled.

- Ice thickness more reasonable indicator for risk assessment of Ice.
- Ice at the tip is more risky than ice at the root due to higher speed.
- Ice mass in kg no indicator for risk!