

Global Wind and icing optimization atlas: case Finland

Winterwind 2016, Åre, Sweden Simo Rissanen, Ville Lehtomäki VTT Technical Research Centre of Finland Ltd

Motivation

At higher elevation both AEP and icing will be increased. Where is optimal location for wind power?

Available atlases:

WIceAtlas (Wind power Icing Atlas) by VTT

Methods

Case Fl

- Global Wind Atlas (GWA) by DTU
- Finnish Wind atlas (FWA) by FMI*
- Finnish Icing atlas (FIA) by FMI*

Motivation

*Finnish Meteorological Institute

pwr loss

pwr loss

Conclusions

AEP

AEP

Example

Naulavaara

Methods (1/2)

4 4 4-4.5 5-5.5 5-5.5 5.5-6 6.5-7 7-7.5 8-6.5 8-6.5 9.5-9 9-9.5 8.5-18 10-10.1 10.5-11 11.5

AEP calculated using:

- Weibull wind speed distribution with k = 2.0
- typical class IIA 3 MW turbine power curve
- GWA (Global Wind atlas) Wind speed at 100 m height and FI wind atlas for comparison

0.1

0.09

0.08

0.07 0.06 0.05

0.04 0.03

0.02

robability density distribution

Methods (2/2)

- AEP loss from WIceAtlas using:
 - Met icing calibration factor from 2 sites (FI & CAN)
 - Interpolated weather data from 3-10 meteorological stations
 - data at 100 m agl
 - IEA class from calibrated met icing and AEP loss from IEA table
- Weather data from ~4500 stations globally >20 yr/station

Methods

Motivation

IEA ice class	Duration of Meteorological icing [% of year]	Duration of Instrumental icing [% of year]	Production loss [% of AEP]
5	>10	>20	>20
4	5-10	10-30	10-25
	3-5	6-15	3-12
2	0.5-3	1-9	0.5-5
1	0-0.5	<1.5	0-0.5

Source: IEA Wind Recommended Practices for wind energy projects in cold climates edition 2011

Case Fl

Example

Naulavaara

Wind and icing atlas comparison, case FI

Wind: Huge (±2m/s) difference between FWA and GWA!

Icing:

Wiceatlas underestimates icing at Northern Finland and overestimates at central finland compared to FIA

Naulavaara

Motivation

Methods

Example Naulavaara 330 m asl (1/2)

Global Wind Atlas

Do not build here

Finnish Wind Atlas

Best place in the area!

Finnish Wind Atlas selected for optimization!

6000

7500

9000 10500

12000

Conclusions

0 200 400

Example Naulavaara 330 m asl (2/2)

FWA AEP

FWA AEP - WIceAtlas & IEA loss

Min (IEA class lower limit)

Max (IEA class upper limit)

turbines with robust control during icing conditions turbines with sensitive control during icing conditions

Conclusions

- 1. Need more reliable global wind speed map in forested areas
- 2. Turbine ice operation strategy critical for AEP analyses
- 3. ALWAYS USE MORE THAN ONE ICING & WIND MAP FOR AEP ASSESSMENT!!

Next steps:

- launch open access global WiceAtlas GIS at VTT website in Q2/2016
- Verify GWA further in forested areas to define wind speed uncertainties

