





# Validation of Icing atlases using SCADA data

#### **Timo Karlsson**

**Research Scientist, VTT Technical Research Center of Finland** 

Winterwind 2016, Åre, Sweden



### Aim

- Compare existing ice maps to on-site measurements
- Use SCADA data from actual, operating wind turbines as ice detectors for validation
- Evaluate how well icing atlases can be used in icing assessment



# Ice maps

| VENDOR                    | MEASURE                                               | SOURCE                     | AREA                        |
|---------------------------|-------------------------------------------------------|----------------------------|-----------------------------|
| FMI                       | Meteorological,<br>instrumental,<br>production losses | Numerical<br>weather model | Finland                     |
| Kjeller Vindteknik        | Meteorological icing                                  | Numerical weather model    | Finland, Sweden             |
| VTT                       | Meteorological icing                                  | Observations               | Finland, Sweden<br>(Global) |
| DNV-GL                    | Instrumental icing,<br>Production losses,             | Observations               | Sweden                      |
| Weathertec<br>Scandinavia | Meteorological icing,<br>Production losses            | Numerical weather model    | Sweden, Finland             |



#### Long term outlook

- Two of the datasources contain a longer dataset
  - **1979-2015**
- This allows us to estimate how the years with measurements stack up to history
- Compare the years with measurements to historical averages
- See how much icing fluctuates on either site



### **Turbine icing**

- Calculated using method published by IEA wind task 19
- Indirect
- Observe effects on turbine performance
- Power decrease from nominal
- Inexplicable stops
- Rotor icing





https://www.ieawind.org/task\_19/Task19 Ice Loss Method.html



#### **Ice case definition**

- Output power outside of P10 of normal operation in safe conditions for +30 minutes
- Icing induced stop
- Outputs:
  - Production losses
  - Rotor icing (amount of hours turbine is effected by icing)





#### **Ice classification**

- Different sources measure different things
  - Meteorological or rotor icing, production losses
- Need common ground for comparison
- IEA ice classes used a quite often
  - Same ice class -> good enough accuracy



#### Ice classes: IEA Ice Classification<sup>1</sup>

| IEA ice<br>class | Duration of<br>Meteorological<br>icing<br>[% of year] | Duration of<br>Instrumental<br>icing<br>[% of year] | Production<br>loss<br>[% of AEP] |
|------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------|
| 5                | >10                                                   | >20                                                 | >20                              |
| 4                | 5-10                                                  | 10-30                                               | 10-25                            |
| 3                | 3-5                                                   | 6-15                                                | 3-12                             |
| 2                | 0.5-3                                                 | 1-9                                                 | 0.5-5                            |
| 1                | 0-0.5                                                 | <1.5                                                | 0-0.5                            |

<sup>1</sup>: IEA Wind Recommended Practices for wind energy projects in cold climates edition 2011, Task 19



# **Sites**

#### Site SWE

- In Northern Sweden
- Multiple turbines
- Relatively bad icing conditions
- Only turbines, no external measurements

#### Site FIN

- Finnish developer with portfolio of several farms
- Several projects in pipeline
- Case wind farm:
  - Turbines A & B (3MW, HH140m, D120m)
  - A & B close to each other
- Ice detector on site
- Heated + non-heated anemometers



#### **SCADA Data and instruments, Site FIN**

Icing hours (% of annual)





### **SCADA Production losses**

#### Production losses (% of expected AEP) ■ FIN 1 ■ FIN 2



- Large differences between two turbine types
- Installed close to each other on similar terrain





#### Icing Atlases, site FIN

AEP losses, long term average



09/02/2016



#### Icing atlases, site FIN





# Historical outlook, site FIN

Annual meteoroligical icing (%)

|         | source 1 | Source 2 |
|---------|----------|----------|
| Average | 4.6      | % 6.6 %  |
| Min     | 2.2      | % 4.4 %  |
| Max     | 8.0      | % 9.0 %  |

- 35 year datasets differ for the same site quite substantially
- This can be attributed to differences in methods to some degree
- Both records show large variance between the best and worst years
  - At most ~70%



# **IEA Classification, Site FIN**

- Set an ice class from all data sources
  - 7 classifications based on ice atlases
  - 4 based on measurements
- Average ~3
- Icing atlases give higher estimates than measurements
- Different turbine brands behave differently in icing conditions

| Source                                    | Ice classes |
|-------------------------------------------|-------------|
| Icing atlases,<br>Meteorological<br>icing | 3, 4, 2, 3  |
| Icing atlases,<br>AEP loss                | 3, 3        |
| Instruments                               | 2, 2, 3     |
| Production losses                         | 2-3, 2      |



#### **Results, site SWE**



#### Average loss 9%

- Large year-over-year differences
  - 300% from min to max

IEA ice class





#### Ice atlases, site SWE

#### **AEP losses, long term average**



Measured Average 9 %



#### Ice atlases, site SWE

#### Meteorological icing, % of year





### Ice classification site SWE

| Source                                  | Ice class |
|-----------------------------------------|-----------|
| Turbine losses                          | 3         |
| Ice atlases,<br>meteorological<br>icing | 4, 4, 4   |
| Ice atlases, production losses          | 3, 3      |

- Here the difference is smaller
- Estimates of meteorological icing seem to overshoot the measurements as well
- Is this caused by the loss counting method?
  - Total losses more than what is accounted for icing here
  - Does the definition need revisiting?



#### Historical outlook, site SWE

Annual metorological icing %

|         | Source 1 | Source 2 |
|---------|----------|----------|
| average | 9.5 %    | 6.0 %    |
| min     | 6.7 %    | 3.9 %    |
| max     | 13.5 %   | 9.9 %    |

- Large difference between best and worst years
- Site ice class > 3
- Individual year results don't correlate with measurements



#### Key takeaways

- IEA ice classification seems to work
- Good ice classification requires
  - Multiple sources
  - Multiple years of data
- Models and measuremeents agree only on long-term trends

# TECHNOLOGY FOR BUSINESS

 $\sqrt{2}$ 

<u>.</u>