

Benchmark study of lcing Forecasts Do they add value?

Ben Martinez, Pierre Julien Trombe Vattenfall R&D

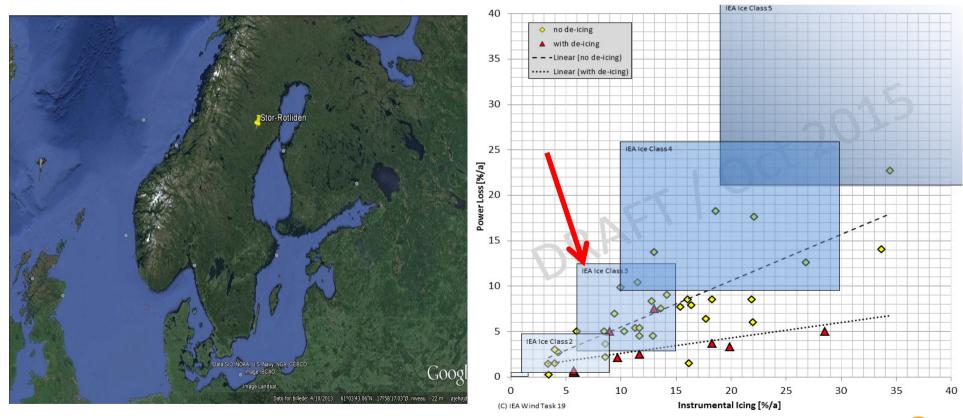
Winterwind 2016 , Åre , 2016.02.09

Outline

- Background / project motivation
- Description of benchmark study
- Icing during benchmark period
- Performance of day ahead icing forecasts for Power
- Performance of day ahead categorical icing forecasts
- Conclusions

Background: Stor-Rotliden Wind Farm

- IEA Ice Class 3 Site with 40 Vestas V90 Wind Turbines (No de/anti-icing)
- Large imbalance costs observed during winters (2010-2015)
- Poor planning reported by O&M maintenance staff → standard weather forecasts do not report icing events



Project Motivation

- Recent development of icing models production loss models
 - Max. 5 years, have matured since.
 - Capture reasonably well magnitude of losses in prognosis mode
 - Only isolated studies of performance for icing forecasts
 - No independent icing forecast model benchmark (blind test) done so far

- Aim of the study:
 - Analyse day-ahead icing forecast performance during winter at Stor-Rotliden
 - Analyse the skill of deterministic/categorical icing forecast
 - Characterise icing forecast variability
 - Potential for being used operationally?

Description of Benchmark study (1/3)

• **PARTICIPANTS:**

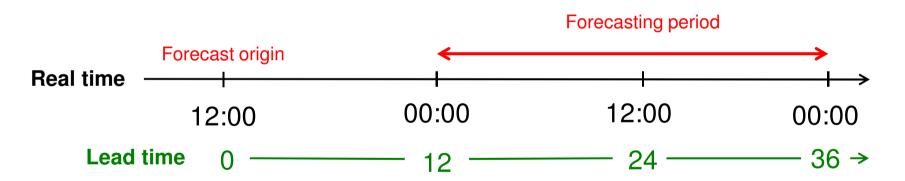
- \circ 6 different icing forecasts provided by different suppliers \rightarrow Type A
- 1 standard forecast output ('ensemble forecast') → Type B
- 3 Baseline models

	Туре А	Туре В	Baseline models
Icing Modelling	Physical + Statistical	Purely Statistical	Purely Statistical
Number	6	1	3
Features	 Modelled prod. losses Icing warnings 	 No modelled prod. losses Can be an ensemble No icing warnings 	Simple modelsBased on SCADA dataProvide Skill threshold

Description of Benchmark study (2/3)

• Some definitions:

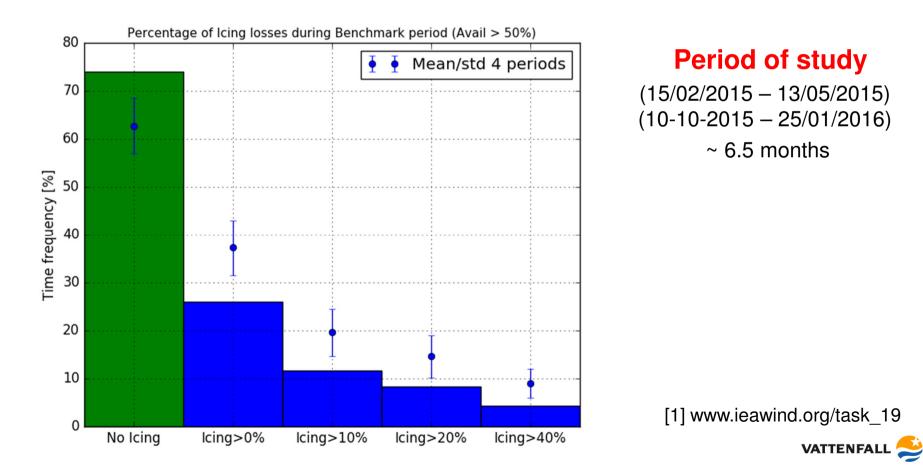
- <u>Forecast origin</u>: Time at which forecast is issued to TSO (12-noon).
- <u>Forecasting period</u>: Period of hours forecasted
- Lead time: Time difference between forecasting period and forecast origin.



- Baseline models:
 - Persistence: Power at Forecast origin = Power during Forecasting period
 - Climatology: Mean Power of last week = Power during Forecasting period
 - Weekly Diurnal: Hourly Mean Power of the past week = Hourly Power in F. period

Description of Benchmark study (3/3)

- Period of study and icing severity:
 - Production losses due to icing computed using IEA T19 Ice Loss Method [1]
 - Less icing than average during same period on the past 4 years



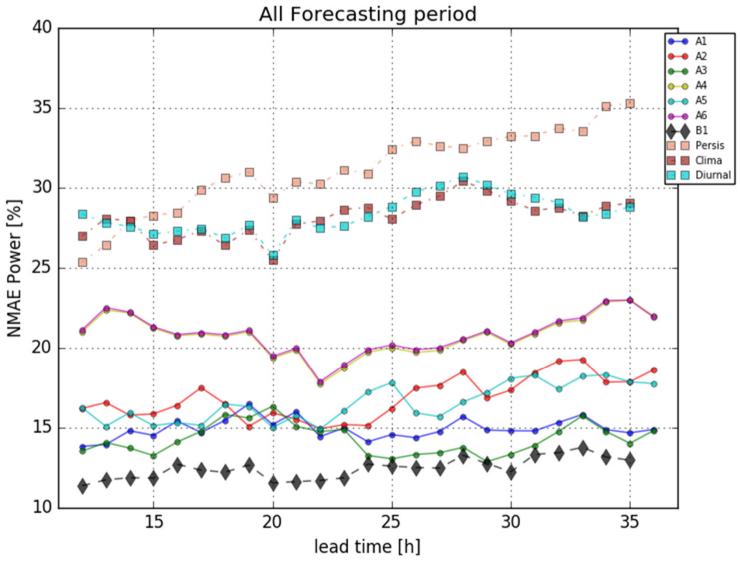
Performance of day ahead icing forecasts for Power

- **<u>Approach</u>**: Data filtering strategy focused on icing severity
 - Applying 5 different data filters
 - Analysis of NMAE, NRMSE and NBE
 - Overall Performance and over leadtime

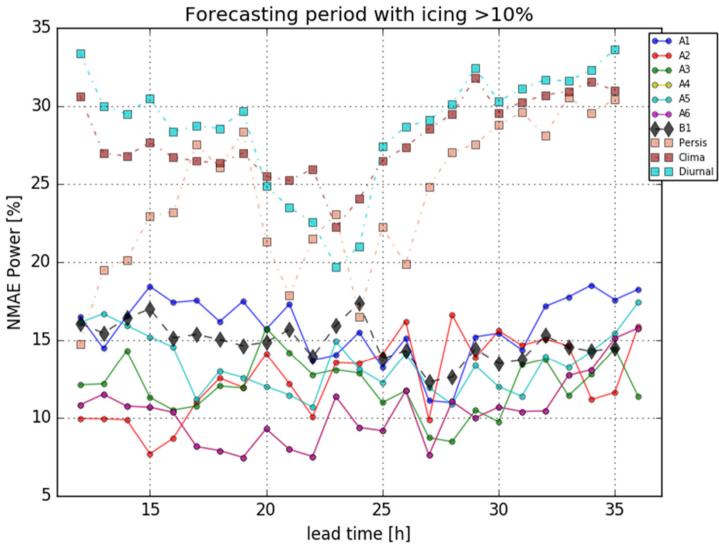
Selection name	Per. Production losses [%]	Availability [%]
All	>= 0	>50
lcing>0	> 0	>50
lcing>10%	> 10	>50
lcing>20%	> 20	>50
lcing>40%	> 40	>50

- Data corrections:
 - Power data \rightarrow hourly averaged & normalized with Available Power Cap.
 - Forecasts \rightarrow Corrected to account for availability

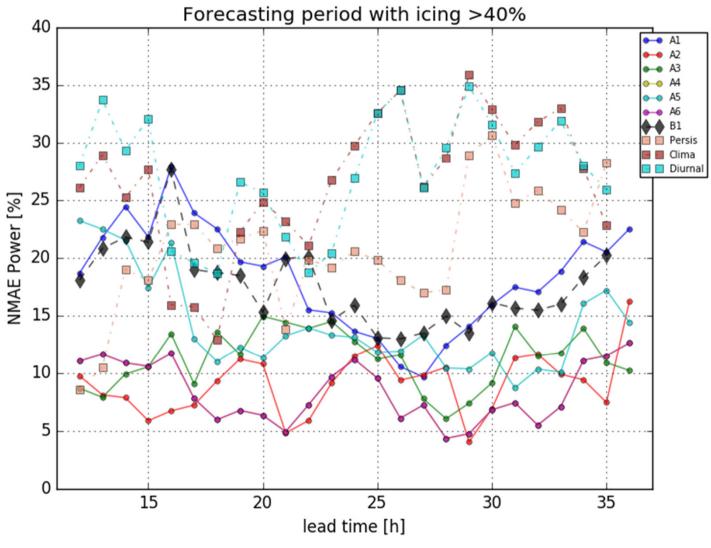
Results for NMAE ('All')



Results for NMAE (Icing>10%)

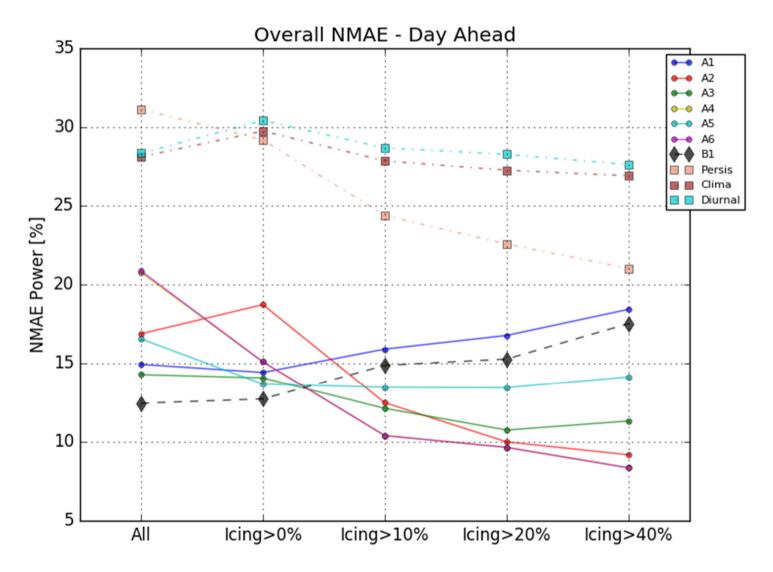


Results for NMAE (Icing>40%)

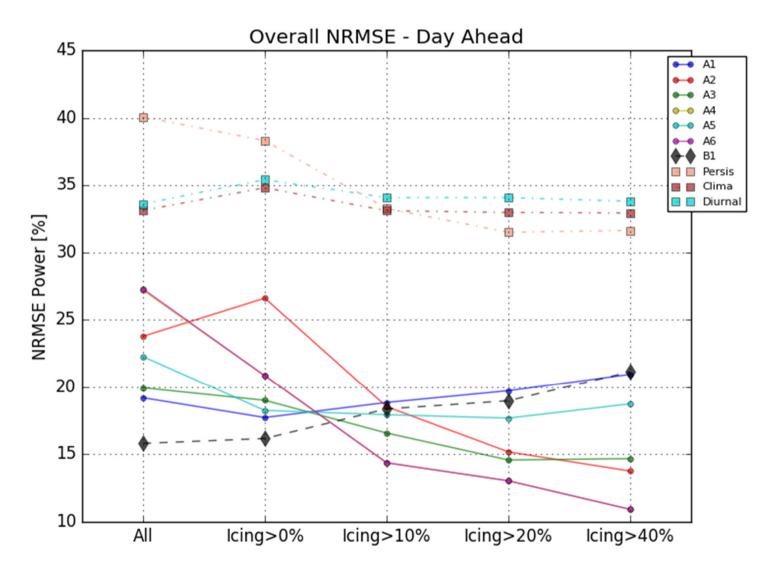


VATTENFALL 😂

Summary of overall NMAE during Icing

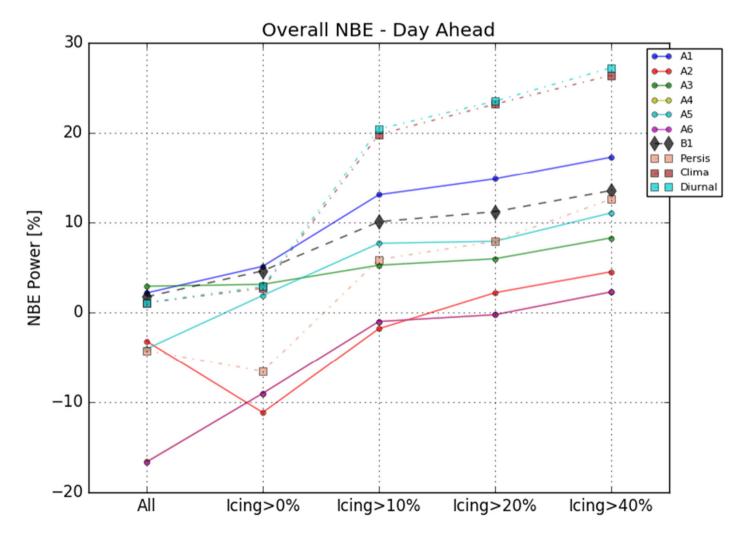


Summary of overall NRMSE during Icing



Summary of overall NBE during Icing

• Forecasts still tend to be positivily bias (overestimation of power) during icing



Conclusions (1) : Icing Forecasts for power – day ahead

- Icing forecast perform better <u>when we know</u> there will be icing during the coming day
- <u>Focus</u>: Finding the best proxy for determining possible icing conditions for the next day
- <u>Strategy:</u> Minimize false alarms and being Conservative

There is potential for using icing forecasts operationally

Performance of day ahead categorical icing forecasts

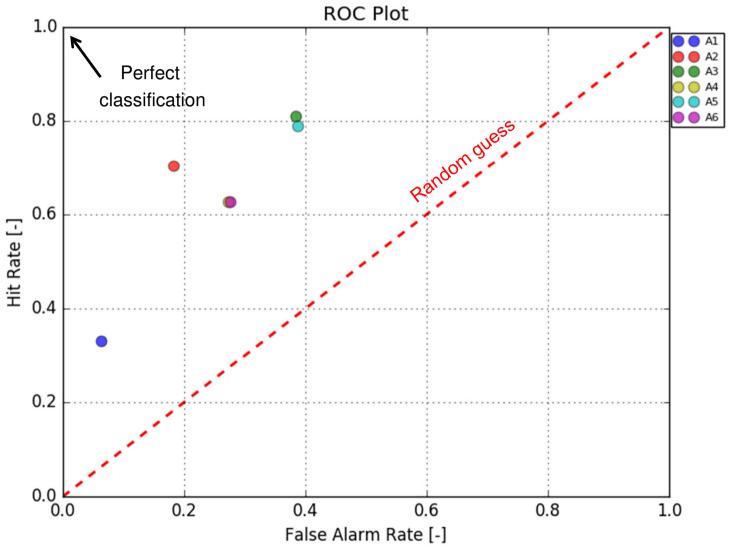
 <u>Goal</u>: Evaluate correct detection of ice during all forecasting period (Icing – No Icing)

Event	E	vent observe	ed .
forecast	Yes	No	Marginal total
Yes	a	b	a+b
No	c	d	c + d
Marginal total	a+c	b+d	a + b + c + d =n

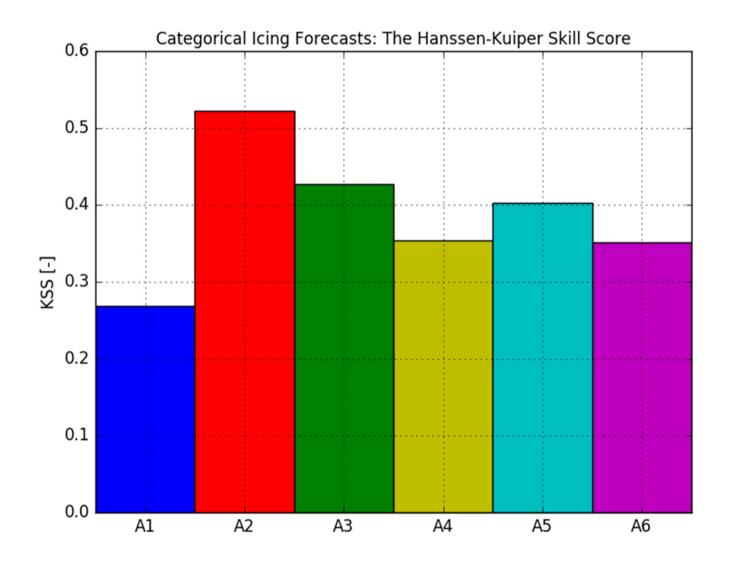
- a = hit
- b = false alarm
- c = miss
- d = correct non-event

H = a / (a + c) = hit-rateF = b / (b + d) = false alarm rate Hanssen Kuipper Skill Score (KSS) KSS = H - F

Results: Categorical Icing Forecasts



Results: Categorical Icing Forecasts



Conclusions (2): Categorical icing forecast

- o Icing forecasts have 'some' skill in determining icing conditions
 - They are still not perfect!

- Somewhat large variability between models
 - False alarm rate ranging from **7% to 39%**
 - Hit rate ranging from **33% to 81%**

- Efforts still to be made for determining the best possible proxy for icing
 - A Probabilitic approach seems the most reasonable
 - Essencial for finding the best weighing strategy for forecasting Power

THANK YOU FOR YOUR ATTENTION !

