

Cold Climate Issues and Related R&D Regarding Wind Energy in Canada

Winterwind 2011

Umeå, Sweden, February 9-10, 2011

CLEAN ENERGY TECHNOLOGIES

Antoine Lacroix Wind Energy R&D Group Ottawa, Ontario

Canada

Frédéric Côté Centre Corus Gaspé, Québec

Presentation Outline

- Wind energy markets
- Climatic conditions
- Cold climates R&D projects
- Future activities
- Summary

Status of Wind Energy in Canada

- Canada's installed capacity grew by 20% (689 MW)
- Estimated 12.3 TWh produced represented 2.0% of Canada's electricity production
- Provinces targeting 9000 MW+ combined installed capacity by 2015

Growth of Canadian Installed Wind Capacity February 2011 (Source: CanWEA)

Installed Capacity in Canada

Current Wind Installed Capacity by Province February 2011 (Source: CanWEA)

Cold Climate Conditions in Canada

- Low air temperatures
 - Heartland
 - Arctic
- Atmospheric icing :
 - Along the coasts
 - High elevations
 - South central

Rime Ice in Eastern North America

 Realtime Nephanalysis (RTNEPH) survey on clouds presence in the Appalachian domain between 1985 and 1987 sponsored by the U.S. Air Force

Source of illustrations: Bailey, B.H. (1990) The Potential for Icing of Wind Turbines in the Northeastern U.S., Windpower 1990: 286-291

Severe Icing

Remote Communities in Canada

- 310 Remote communities in Canada
 - Not connected to the grid
 - Powered by Diesel generators
 - 163 with wind energy potential
 - High penetration installation potential of 347 MW
 - First successful wind-diesel in Ramea in 2004
 - Wind in remote communities: sounds promising but progress is slow

Remote communities in Canada. (Source: NRCan)

CANMET ENERGY TECHNOLOGY CENTRE

Wind-Diesel-Hydrogen Development in Ramea, NL

Wind-Diesel-Hydrogen

- First wind turbines installed in 2004
- New capacity added for hydrogen storage
- Wind capacity
 - 690 kW:
 - 6 x 65-kW Windmatic
 - 3 x 100-kW Northern Power 100

tural Resources Ressources naturelles nada Canada 65-kW wind turbines in Ramea, NF

Components

- Incorporation of hydrogen to Ramea wind-diesel system
 - Electrolyzer
 - 324 kW, (30 Nm³/h)
 - Storage
 - 3×1000 Nm³ @ 10 bars (145 psi)
 - Hydrogen genset
 - Internal combustion engine 250 kW
- Possible research study on interaction between wind turbines and wireless communications

Electrolyzer

Wind-Diesel-Hydrogen Installation

Hydrogen Storage Tanks

Future Activities

- Tower instrumentation
- Characterization of
 - icing
 - wind speed and direction
 - air temperature
 - humidity
 - duration of icing
 - correlation between the above
 - Identify the amount of energy at low air temperatures and during icing events

Climatological Information in Support of Cold Climate Issues

- Use of climatological information for renewable energy applications
 - Work using the NWP meso-scale modelling approach is still in the early stages with no concrete results yet
 - Early efforts in this work contributed to the update of design icing thickness due to freezing rain for the 2010 CSA electrical transmission line standard
 - Work is underway at EC to estimate ice accretion from frozen wet snow
 - NWP approach will be especially important for rime icing in exposed coastal and high elevation locations
 - where there are few standard meteorological observations

Summary

- Wind energy in cold climate is definitely an issue in Canada
 - Cold air temperature affects a majority of the country
 - Best wind resources are often located in ice prone areas
 - A lot remains to be known about rime icing
 - Glaze ice will be an issue for offshore projects
 - Production loss due to icing difficult to evaluate
 - Cold climate wind energy R&D infrastructures in Canada are developing (TechnoCentre éolien & WESNet)

